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The Schrijdinger equation is used to derive a linear partial differential equation which 
forms the basis of a numerical method for computing the temperature-dependent 
spatial distribution function of quantum statistical thermodynamics. The numerical 
method is used to calculate the spatial distribution function including quantum effects 
over a wide range of temperatures. The advantages of employing this numerical method 
are discussed. 

The calculation of the spatial distribution function for a wide range of tempera- 
tures is one of the more difficult problems in the field of quantum statistical ther- 
modynamics. The direct method of obtaining the spatial distribution function 
at a given temperature consists of solving the Schriidinger equation 

for the wave functions &(x) for all the quantum states and then evaluating the 
sum [l] 

where /3 = I/kT is the reciprocal temperature, and En denotes a complete sum- 
mation over all states including an integration over the continuous part of the 
spectrum. Expression (2), which is frequently referred to as the Slater sum, has 
been the subject of important investigations [2-4]. In several cases, the series (2) 
has been summed to give an analytic expression for S(X, /I). One such case occurs 
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for the harmonic oscillator potential V(X) = mu2 x2/2, for which the wave functions 
are related to Hermite polynomials. Using a theorem on the sum of products 
of Hermite polynomials, Uhlenbeck, Ornstein, and Gropper [5, 61 obtained 

s(xyp) = [2nd&3hw) I 
l/2 

exp[ - (mox2/fi) tanh@&J/2)]. 

This expression for the Slater sum is valid for all temperatures. Unfortunately, 
only a few such results have been obtained to date. 

It is the purpose of this paper to use the Schrodinger equation to derive directly 
a partial differential equation for the spatial distribution function 8(x, /3), and 
then to employ this result to obtain a method for calculating numerical solutions 
for S(X, @. 

PARTIAL DIFFERENTIAL EQUATION 

The probability density of quantum mechanics is given by the relation 

P(x) = w K49 (4) 

where 4(x) is the complex conjugate of the wave function #(x). The first and second 
derivatives of the probability density are 

P’ = $‘# + +p, (5) 
P" = 2aP$-2cf$. (6) 

To derive (6) we have used the Schriidinger equation 

f = 4, (7) 
where 

a(x) = (2m/A2)[V(x) - E]. (8) 
Differentiating (6), we obtain 

PH' = 2aP'+ 2dPf Za[cf# + +f]. (9) 
Combining (5) and (9) yields a linear differential equation for the probability 
density 

P"' = 4aP'+ 2a'P. (10) 
Equation (10) can be written in the form 

g P- + [E - V(x)]P' - (l/2) VP(x) = 0. 
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Multiplying (11) by exp(--BE,), summing over all states, using (2) and noting that 

as 
ag= n - 1 W’,dx) exp(-PA (12) 

we obtain a linear partial differential equation for S(x, /3): 

fi2 a%- -- 
8m i3x3 

- -g$ - V(x) g - (l/2) V’S(x, /I) = 0. (13) 

If V(x) is the harmonic oscillator potential, it is readily confkmed that (3) satisfies 
(13). The partial differential equation (13) was derived previously [7] by linearizing 
Bohm’s nonlinear equation for the probability density [8]. 

INTEGRAL EQUATION AND NUMERICAL SOLUTIONS 

A convenient form of (13) is obtained by integrating (13) from a boundary 
point x0 to an interior point x: 

(fi2/8m)a2S/ax2 - WaP = W) xx, lo - U/2) sz v’(Y) m, ko & 

+ (W~m)W(x, , ~Y~x21 - Wx, , b9Pg + ~Cd W. , PI. (14) 

The values of the three inhomogeneous terms on the right hand side of (14) are 
determined by the boundary condition at x,, . For example, if x,, is the position 
of an atom of mass m far from an adsorbing surface, the Slater sum has the form 

and (14) becomes 
S(x,, j3) = (m/27rPfi)1/2, (15) 

(fi2/8m) a2sjax2 - aslag 

Another convenient equation for calculating the spatial distribution function 
can be derived by considering S(x, j3) to be equal to the sum of the classical spatial 
distribution function S,(x, /3) plus a quantum correction term R(x, Is), 

where 
S,(x, fl) = (m/2nli2j3)1~a exp[-/W(x)]. (18) 
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Substituting (17) into (16) yields 

(fi2/8m) aaRIa - aqag 
= V(x) R(x, /$I - (l/2) j-n V’(v) R( y, rs) 4 - (fi2/8m) awax2, (1% 

20 

where 

a2sc/a9 = (m/2.rrfi2f3)1~2 [/32(V')2 - /W"(x)] exp[-fiV(x)]. (20) 

The two terms on the left hand side of (16) or (19) have the form of the diffusion 
equation with x and fl as the independent variables. In solving (16) or (19) numeri- 
cally, this fact led us to use a Crank-Nicholson operator [9] for the left hand side 
of (16) or (19). A modified Picard iteration method [lo] was employed to treat the 
integral on the right hand side numerically. The numerical procedure consisted 
of starting the computer program in the high temperature region at /$, with the 
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FIG. 1. Potential energy between an argon atom and a graphite surface. 
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classical distribution function given by (18) and using the Crank-Nicholson 
operator and the modified Picard iteration method to compute the spatial distribu- 
tion function at &, + d/3. From the value of the spatial distribution function at 
/3,, + d/3, the value of the spatial distribution function at /3,, + 248 was then 
similarly computed. The numerical procedure was continued until the spatial 
distribution function was calculated at the desired value of /?. In addition, to check 
the accuracy of the results, the calculations were repeated with smaller db steps 
and smaller Ax steps. The proper operation of the computer program was confirmed 
by calculating the spatial distribution function S(x, /3) for a harmonic oscillator 
potential and establishing that the numerical results agreed with the exact analytical 
expression (3). 

Next we considered the problem of calculating the spatial distribution function 
of an argon atom interacting with a graphite surface. The potential energy between 
the argon atom and the carbon atoms of the graphite lattice was calculated by the 
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FIG. 2. Quantum correction R(x, fi) to the classical spatial distribution function at fi = 8.0 ev-I. 
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method of Crowell [l l] and the results are shown in Fig. 1. The quantum correc- 
tion R(x, p) as a function of distance at reciprocal temperatures /? = 8.0 ev-l and 
p = 31 .O ev-l as obtained from the computer program for (19) are shown in 
Figs. 2 and 3, respectively. 

The advantages of using (16) or (19) to calculate S(x, /3) rather than (2) become 

-6OOd I I I I I 
2 3 4 5 6 7 

DISTANCE ( 8 ) 

FIG. 3. Quantum correction R(x, /?) to the classical spatial distribution function at 
j3 = 31.Oev-l. 

obvious when one considers what is involved in evaluating (2). First, we would 
have to solve the Schrbdinger equation (1) numerically for all the eigenfunctions. 
This is especially difficult for thehighereigenfunctions, which havemany oscillations. 
Assuming that this could be done, we would still have the problem of evaluating 
the infinite sum (2). 
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